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Summary. The multiconfigurational second-order perturbative treatments of 
molecular electronic calculations can be classified into four groups: i) quasi-degen- 
erate perturbation theory (QDPT) in the basis of determinants, ii) non-degenerate 
perturbation theory applied to eigenvectors resulting from a truncated CI, 
ii) QDPT in a model space of non-interacting multiconfigurational functions, 
iv) intermediate Hamiltonians theory, and examined according to three criteria: 
i) risk of numerical instability due to intruder states, ii) ability to treat the effect of 
the outer-space on the model space component of the wavefunction, especially 
important for the treatment of weakly avoided crossings, iii) separability for 
(A*... B) problems. None of the existing methods satisfies these three criteria, as 
shown both by model analysis and real ab initio calculations on LiF and CuF. 

Key words: Many-electron correlation problem - Perturbation theory - Multicon- 
figurational approaches 

1. Introduction 

Perturbation theory has been a very useful tool for the study of ground state 
electronic energies. From a theoretical point of view it has first enabled the main 
logical structure of the many-body problem to be established through the linked 
cluster theorem [-1]. As a practical tool it has proved to be quite an efficient method 
for the evaluation of the correlation energy when starting from the Hartree-Fock 
(HF) determinant, and M611er-Plesset [2] perturbative evaluations of orders 2 to 
4 are routinely used in Quantum Chemistry [3]. However, this method is poorly 
convergent and becomes unreliable when bonds are broken, i.e. when near- 
degeneracies occur between the HF determinant and some doubly excited deter- 
minants. For excited states one also meets both practical difficulties (lack of 
convergence) and logical problems since the zeroth-order function cannot be 
single-determinantal. 

Thus, it is clear that some combination of perturbation and variation has to be 
used. Multireference perturbative methods will be briefly reviewed in this paper 
and their size-consistency will be analyzed in an elementary intermolecular prob- 
lem. The first and most natural approach consists in using the quasi-degenerate 
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perturbation theory (QDPT) [4-6], i.e. the perturbative construction of an effective 
Hamiltonian followed by a diagonalization. The second approach consists in 
diagonalizing first the restriction of the Hamiltonian to a model space and perturb- 
ing the resulting eigenvectors one by one, it may be called contracted MRPT. In 
a third strategy, one perturbs collectively a subset of the eigenstates of the model 
space again by using QDPT but in a new and smaller model space. The last method 
uses the recently proposed intermediate effective Hamiltonians [7]. We show that 
no method combines satisfactorily the following logical and practical requirements, 

(i) to avoid instabilities due to intruder states, 
(ii) to revise the content of the eigenfunction in the model space under the effect of 
the perturbation, 
(iii) to be size-consistent. 

2. Brief review of combinations of perturbation and diagonalization 

2.1 The three criteria 

The methods will be discussed according to three criteria, namely 

(i) the likelihood of convergence for the perturbative step, 
(ii) the quality of the components of the wavefunction in the model space, 
(iii) the additivity of the energy for non-interacting systems. 

The first criterion is quite evident, at least from an elementary viewpoint. Any 
large perturbative ratio in the expansion of the wave operator should be avoided. 

The second one can be visualized with the elementary model problem taken 
from Ref. [8]. Suppose that the model space is spanned by two diabatic configura- 
tions (or determinants) ~bl and ~b2 which weakly interact through a small matrix 
element h (independent on the nuclear coordinate r) and that (~bllH[ ~b~> = 0 and 
(~b21HI ~2~ = ar, so that at zeroth order the crossing occurs at r = 0. Suppose also 
that the outer-space determinants interact more with ~bl than with ~b2, or only with 
~b~. This situation is schematized in the following matrix, reducing the outer-space 
to one determinant ~b3 

~2 aY 

q~3 0 AE 

and assuming AE > ar and 0 < K ~ AE. 
It is clear that the actual crossing will take place at r ~- - K2/aAE and not at 

r = 0. If one defines the crossing point as the distance rc at which the coefficients of 
q51 and ~b2 are equal, it becomes possible to give the following limited development 
of ro in powers of AE -1, assuming IKI >> h. 

K 2 K2h 4h a K 4 
a r o  = - + + + + . . .  ( 2 )  

As will be discussed later, some methods do not manage this phenomenon prop- 
erly. 

The last criterion may also be illustrated through a model problem. Consider 
an intermolecular A...  B problem, where A and B do not interact. Suppose that 
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one is interested in the spectroscopy of A, and thus that the model space determi- 
nants differ only by excitations on A. In a correct method, the inclusion of system 
B in the intermolecular problem does not affect the spectrum of A. Again, it will be 
seen that some methods do not satisfy this requirement which we may call the 
"weak separability condition", by contrast with more severe requirements which 
would ensure separability for problems where the model space involves excited 
configurations on both A and B. Notice that this weak separability criterion is 
much less severe than the cancellation of any unlinked contribution. 

2.2 Quasi-degenerate perturbation theory in the basis of determinants 

In principle, when several determinants become nearly degenerate one should 
make use of quasi-degenerate perturbation theory [9-14]. One first selects a 
p-dimensional model space S, and the effect of the outer space takes the form of an 
order-by-order change (or "dressing") of the matrix elements between the model 
space determinants. QDPT at order n leads to the construction of an effective 
Hamiltonian (Heft(n)), and the diagonalization of the effective Hamiltonian provides 
a nth order evaluation of p eigenenergies and of the components of the correspond- 
ing eigenvectors on the model space. At convergence the Bloch effective Hamil- 
tertian [5] will be such that, if Ps is the projector on the model space, and if 
H0j = Ejlp~, the p roots of Hef t satisfy 

neerlPs~b~ > = E,IPs~k~ >, i = 1 . . . . .  p, (2) 

provided that there is a good correspondence between the model space and a 
p-dimensional H-stable subspace (the target space, i.e. a set of p eigenvectors of H), 
the effective Hamiltonian is entirely defined by Eq. (2) or by 

B eef = ~[Ps~bi >Ei < PsOil ~. (3) 
i 

Quasi-degenerate perturbation theory treats all the roots of the effective Hamil- 
tonian in an even-handed manner. 

To analyse the possible occurrence of intruder states, one should examine the 
second-order expression of the effective Hamiltonian. If ~bl and ~bj belong to S, 

(~b~]Heff¢2)l~bj) = <~b~lHl~bj> + ~ <~IBI~><~IHIqSj>(E ° - E ° )  - I ,  (4) 
~ ¢ s  

where Ej  ° and E ° are the eigenvalues of an yet unspecified zeroth order Hamil- 
tonian He 

Ho j H o e ,  o = = E~4~. 

One may easily see that this method will diverge as soon as one of the outer 
space determinants come close in energy to one of the model space determinants. If 
the model space is a complete active space (CAS), it involves some multiply-excited 
determinants of high energy; there is no energy gap between the model space and 
the outer space and the perturbation will diverge sooner or later. 

The overlapping of model space and outer space zero-order spectra can be 
readily avoided by a simple modification of He via an appropriate shift of un- 
perturbed levels 

E ° --, E °' = E ° + 

Eo  = E o  + 
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such that E °' ,~ E °'. In several computational schemes the shift is restricted to the 
model space (S~ = 0). Note that the stabilization of second-order terms in shifted 
expansions does not indicate suppression of divergence, since the additional diag- 
onal perturbation 

v '  = - ~ l C s ) S s ( ¢ s l  - ~1¢~)S~(¢~1 (5) 
J ~¢ 

hidden at second order, reappears in the numerators of higher-order terms (see 
Refs. [15-17] for detailed discussions). Moreover, in many cases the large ampli- 
tudes of V' should raise some doubts regarding the reliability of low-order 
estimates. Nevertheless, shifted second-order schemes have proved their viability in 
molecular electronic structure calculations [18, 19]. This contradiction might be 
resolved by attributing the shifted second-order terms to potentially converged ex- 
pansions for operators differing from conventional effective Hamiltonian, namely 
intermediate Hamiltonians ([17], see Section E). 

Regarding the component of the wavefunction in the model space, one may 
examine the behaviour of H Cmz~ in the weakly avoided crossing model. 

If Ho is not degenerate in the model space (E ° = 0, and E ° = ar), the sec- 
ond-order effective Hamiltonian H efr¢2) is given by 

¢1 A E  h 

¢2 h ar " 

The crossing takes place at arc = - K 2 / A E .  
If Ho is forced to be degenerate in the model space with the value 

E ° = E ° = ar/2, the second-order effective Hamiltonian becomes 

¢1 ar /2  A E  h 

¢ 2  a r  

and the position of the crossing is given by K 2 = arc(arc~2 - dE) ,  or, after a limited 
development in powers of AE,  

K 2 K 4 
a r  c = 

A E  2 A E  a" 

The term K 4 / A E  a of rc (cf. Eq. (1)) is not obtained from H elf(2), whatever the 
choice of Ho, but the leading term is correct. 

Concerning the additivity of the energy for the (A ... B) non-interacting prob- 
lem, one may easily see from Eq. (4) that if the model space is defined by excitations 
on A only, the double excitations D~, on B will contribute to all diagonal matrix 
elements only by the same quantity - h2B/AEk~, where 

hk,~ = (¢oB1H[Dk+~¢o~) and A E k ,  = ( D ~ ¢ o ~ l n [ D [ ~ ¢ o ~ )  -- (¢o~1H1¢o~). 

From a much more general point of view, Brandow has demonstrated a gener- 
alized linked duster theorem [9] (i.e. the cancellation of all unlinked contributions) 
provided that the model space is a C A S  model  space. To maintain the size-consist- 
ency for the perturbative expansions with shifted zero-order approximations is 
a rather complicated problem. To ensure the size-extensivity and the weak separ- 
ability as defined in Section 2.1, purely one-electron shifts are usually employed, i.e. 
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the shift of zero-order M611er-Plesset energies for many-electron basis function is 
defined via modification of one-electron levels. Freed ([14, 18] and references 
therein) proposed a choice of shift parameters such that all the valence orbital 
energies are lifted to their average value. It is clear, however, that such a scheme 
cannot guarantee the exact separability of effective Hamiltonians (except for the 
case of separation into identical fragments) because of the explicit dependence of 
shifted valence orbital energies of one subsystem on the orbital energies of the 
others. A similar problem appears when all the valence levels are shifted to the 
bottom of the valence one-electron spectrum, as prescribed by Hose [20]. Note 
that such shifts are not restricted to model spaces, as zero-order many-electron 
energies for all configurations containing at least one valence orbital are modified. 

Thus one faces a complete contradiction between the conditions for a good 
convergence and those for separability. The second-order QDPT approach has 
been applied with significant success by Freed and coworkers, but it is clear that it 
cannot converge at high orders since in such cases the target space cannot be 
defined [16, 21] in a reasonable way. 

2.3 Prediagonalization in the model space followed by non-degenerate 
perturbation treatment 

As an alternative approach one may think of a preliminary diagonalization in the 
nearly degenerate subspace S, followed by a perturbation of the resulting eigen- 
vector 0 s 

PsHPsl~ks) = E, lOs), ~/s = ~. C,,c)~. (6) 
l ~ S  

Since the two vectors Of and ~ps do not interact directly, the perturbation is 
essentially due to the outer space and the energy gap between Ei and the outer 
space determinant energies will be sufficient to avoid unduly small energy denom- 
inators. 

The first solution consisted in perturbing the eigenvector ~,, from its interac- 
tion with single determinants of the outer space. This is the principle of CIPSI [22] 
and of some recent variants [23, 24] of this method. This algorithm is efficient and 
provides rather reliable results; it is quite general since the model space does not 
need to be complete and the size of the prediagonalized space may frequently reach 
several thousands. For  such dimensions of the prediagonalized space, when it is 
selected to include all the determinants with important coefficients in the desired 
wave functions, the 2nd-order energy becomes rather small and good accuracy may 
be reached. 

The method is not size-extensive [25], although in practice the deviation from 
additivity in intermolecular problems appears very small [26]. The second-order 
correction for the state ~ is 

I<q~lHlOS>l 2 
- ,  = (7) 

Now one must define the zeroth-order energies E ° and E °. The most satisfactory 
definition is called "barycentric MNler-Plesset H0" [22]. Using a monoelectronic 
MSller-Plesset Hamiltonian in terms of monoelectronic functions r and energies Er 

H MP = ~ E, a + a~, (S) 
r 



172 J.-P. Malrieu et al. 

one may define 

E ° = <~b~IHMP I~b~>, (9) 

E o s rap s = <~,[H [4,> = ~ C~,<~bIIHMP[q~,> • (10) ItS 
Note that, in contrast with Eq. (8), the zero-order Hamiltonian defined by Eqs. (9) 
and (10) is not a sum of one-particle operators. 

Let us consider the second-order contributions from the so-called inactive 
double excitations, i.e. excitations from the orbitals which are doubly occupied in 
all the determinants from S to those which are always empty within S. To ensure 
even the weak separability, each of the inactive double excitations D~, possible on 
all the reference determinants ~bl should give a simple energy shift - h~:/AEk, 
independent on the state i; Actually the contribution of all determinants D~- ~ for 
a state i will be 

[<Dk + ~b,lHl@i>l = hE,~s C~ 
L,,,,,~(2)+ = ,~Y Eo _ Eoo: ~, = ~o  _--EO: ~," 

Since E°:~, = E ° + AE~ with E ° = <~,lnMPl(br>, 

E ° - E ° : ~ ,  = - a ~  + E ° - E ° 

-- aEk~l E° ' -  E°~ 
\ AEk ]" 

If one considers that AEk >> IE o - E°I it becomes possible to write 

CI EI ) E~,,,: = hE E °  - E ,  2 o 
AEk 1 + + (9(2) AEk 

hE 
- - - ( 1 + ~ 0 ( 2 ) )  v i .  

AEk 

Thus the barycentric MP definition of Ho (Eq. (10)) ensures an approximate 
separability of inactive double excitations. In the practical codes this property has 
been forced by estimating the effect of inactive double excitation as - h~e/ZE~, 
but this is a theoretical weakness of CIPSI. The other choices of rio, for instance the 
use of the eigenvalue of PsHPs 

E o = @SlHl~S> 

are really poor since increasing the size of S and lowering E °, the absolute value of 
the denominators in Eq. (7) is increased and the effect of the inactive double 
excitations is lowered in absolute value. This problems has apparently been 
ignored in a recently proposed variant 1-24] of the CIPSI strategy. 

Before discussing the behaviour near avoided crossings, let us present briefly 
the principle of the CASPT2 algorithm of Roos and coworkers [27]. This method, 
as CIPSI does, perturbs the vector ¢,s resulting from the diagonalization of 
a reference space which is now required to be a Complete Active Space. CASPT2 
no longer perturbs ~s under the effect of single determinants but under the effect of 
multideterminantal perturbers Dt + ~s. This change leads to a dramatic increase in 
speed, despite some complexity due to the non-orthogonality of D~- ~s and D, + V s. 
The choice of H0 as a sum of one-dectron generalized Fock operators ensures that 
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inactive double excitations have exactly the same effect 

h~; Vi 
E~o: = AEk 

on all eigenstates, as it should be. One should realize that the CASSCF multicon- 
figurational reference function is not, generally an eigenfunction of this purely 
one-electron Ho and the perturbation matrix elements 

should not vanish [28]. The problem has been circumvented via projecting H0 onto 
the subspaces spanned by ~s, the rest of eigenvectors of PsHPs, and single and 
double replacements from ~k s respectively. 

Both CASPT2 and CIPSI are "contracted", i.e. the component of the wavefunc- 
tion in the model space is determined by the first variational step. In our model 
problem 

Os = cos ¢p ~bx + sin tp ~b2, Os_ = _ sin ~o ~bl + cos tp ~b2 

and q~ = + rt/4 for r = 0. At this distance ~s has equal components on q~x and ~b2, 
and the perturbation energy will be 

K 2 

E l + ,  = 2 A e  = 

i.e. shared between the two eigenstates. As was shown in Ref. [8], if [KZ/AE] >> Ihl, 
the potential energy curves present spurious irregular behaviours with double 
curve crossing, one near r = 0 and the other one near r = - kE/a AE. This is due to 
the contraction of the wavefunctions ~k s and ~ s  which should be mixed under the 
effect of the outer-space determinant. 

CASPT2 has proved to be a very efficient and accurate method, at least when 
large model spaces are used. It has been applied to the calculation of the vertical 
spectrum of a large series of conjugated organic molecules [29] and giving a 0.1 eV 
mean error for the transition energies. However, if one considers one of the most 
significant errors (0.4 eV), it concerns a 1B u state of butadiene [29] which is a strong 
mixture of a valence configuration of valence bond ionic character and a Rydberg 
configuration. Since the dynamical correlation of the former configuration is much 
larger than that of the latter, it should change the valence/Rydberg content of the 
wavefunction and the 2nd-order results of the contracted procedure are therefore 
not correct, the spacing between the two XBu states is underestimated and the 
energy of the lowest is too high. 

2.4 Use of quasi degenerate perturbation theory after diagonalization 
of the model space C1 

In view of this difficulty Sheppard et al. [30] and Spiegelmann and Malrieu [8] 
were led to propose the use of Quasi-degenerate perturbation in the basis of the 
eigenstates of PsHPs (i.e. of the model space CI matrix). Then the interaction 
between the model space functions and the outer-space determinant redefines 
off-diagonal effective interactions between the function Os and Os, which are zero 
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at first order 
<~SlH[ ~b~> <~b~lHI ~,ff> (11) 

<~S[H°r"2)l~S> = Z o , 
~¢s E ° -- E~ 

thus revising the model space component of the eigenvector. In the weakly avoided 
crossing model, one sees that 

K 2 
<tfiSlHoff(2)] ~s> = sin (p cos ~o ~-~, 

which becomes maximum for r = 0. At this distance it is clear that 

(i) the first-order interaction between ~O x and ~/2 leads to a n/4 rotation of the 
vectors Os and Os with respect to ~b 1 and ~b2, 

~+=(~, +~2)/v~, 0- =(~,-~2)/~, 
(ii) the second-order interaction through the outer space, when it is larger than the 
lst-order one (IK2/AEI >> Ih]) induces a backward rotation; the eigenstates of the 
effective Hamiltonian are closer to the diabatic configurations ~x and ~b2 as they 
should be 

q,l = (~,+ + q , - ) / v / 2  = ~ 1 ,  

q,2 = (~,+ + q , - ) / v / 5  = ~ 2 .  

The prejudice introduced by the 1st-order diagonalization is repaired by the 
QDPT treatment. 

This treatment is a decontracted perturbation, and there is no doubt that 
a correct treatment of excited states must be decontracted in order to revise the 
content of the wavefunction in the model space. 

At this stage one has only chosen a new basis set of the initial model space. In 
such a method the intruder state problems will be even more severe than when 
applying QDPT in the basis of single determinants, since the highest eigenvalues of 
PsHPs are pushed above the highest energies of the determinants. The authors of 
Refs. [8, 30] have immediately suggested a reduction of the model space to the 
lowest eigenstates of PsHPs of spectroscopic interest. Let us call S' this reduced 
model space 

Ps' = ~ [~i)<~i], m < n, (12) 
i=1 

PsHPsl~k,> = ei[~,>. 

One may call S" the complementary subspace 

Ps,, = Ps - Ps, (13) 

Is , ,= ~, ]~Oj><$j]. (14) 
j = m + l  

Then since <~;]H] Sj> = 0, the effective Hamiltonian built on S' will not have any 
second-order contribution coming from S" 

<~,dHO.(2)l,pj > = ~ <~jlHIO.><c~.IHI~j> i,j e S'. (15) 
. s  e ° - e  ° ' 
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The energy difference E ° - E  ° should always be rather large since one is only 
interested in the lowest states, and the method will avoid any intruder state 
problem. 

The QDPT version of CIPSI in the basis of the relevant eigenstates of PsHPs is 
routinely used in our group in the most accurate spectroscopic studies (see for 
instance Refs. [31, 32]). There is no doubt that an uncontracted modification of the 
CASPT2 method can also be conceived by calculating off-diagonal 2nd-order 
coupling between the selected ~kl vectors, and this would solve the major defects of 
this efficient method. The use of QDPT in a basis of eigenfunctions of PsHPs has 
been reproposed recently by several authors (Nakano [~3], Decleva et al. [34]) and 
numerical tests illustrate the efficiency of the method. 

It is not clear, however, that the method solves all near-degeneracy problems or 
that it makes possible the computation of reliable potential energy surfaces on 
a wide domain of geometries. Suppose that one is interested in m roots obtained 
from the diagonalization of a n-dimensional CI space containing the main physics 
of the m states. Now if an avoided crossing occurs between the ruth root and the 
(m + 1)th root, the defect already discussed for m = 1 in the discussion of CASPT2 
type algorithms will affect the ruth energy. The QDPT can only mix the ruth 
eigenstate with the ( m -  1) states of lower energy; it cannot mix it with the 
(m + 1)th eigenstate, and this will result in spurious behaviours, double curve 
crossings and so on. The response cannot be that one should enlarge the restricted 
model space S' to dimension (m + i), since it is likely that for some molecular 
conformations the (m + 1)th eigenstate presents another avoided crossing with the 
next one, and the problem will reappear somewhere else. So that in practice the 
diagonalization of PsHPs, followed by a reduction of the model space in a basis of 
multiconfigurational roots, cannot be considered as a general recipe to circumvent 
both the intruder state problem and the need to revise the model-space component 
of the eigenvector. 

From a qualitative point of view, one may question the ability of this method to 
treat correctly the effect of the outer space. Consider for instance a valence CAS 
model space. The outer space should bring what is usually called the external or 
dynamical correlation. Let us write the valence CAS in an orthogonal valence bond 
basis set (by defining nearly atomic orthogonal molecular orbitals as the basis of 
the subspace of active MOs). Then the determinants may be classified as neutral, 
singly ionic, doubly ionic, etc.. .  Since they have higher energies, the multiply ionic 
determinants have lower weights in the CAS wavefunction ~. But the dynamical 
correlation (orbital breathing, instantaneous repolarisations effects, Coulomb hole 
effect) is larger for the (multiply) ionic VB components than for the neutral ones. 
If one works in the basis of the lowest eigenstates of PsHPs, and only takes into 
account the 2nd-order impact of the outer space in a reduced model space, one will 
never include these specific effects of dynamical correlation on the highly ionic 
components, which essentially span the upper eigenstates of PsHPs. Dynamical 
correlation increases the weight of multiply ionic VB structures in the wavefunction 
with respect to the CAS level, as shown elsewhere [35]. This effect is not taken into 
account if one builds an effective Hamiltonian on the reduced model space of the 
lowest eigenstates of PsHPs, since these eigenstates are essentially VB-neutral. 

Moreover, the method is not size-consistent, as numerically demonstrated by 
Sheppard 136] and it does not satisfy our weak separability criterion. Actually the 
inactive process D~- possible on all determinants of the model space appears 
through the interaction with the outer space determinants D~-~bl. These determi- 
nants should not contribute to an effective coupling between ffs and ~k s since the 
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excitation D~- may concern an infinitely remote electron pair. However, Eq. (15) 
gives, for the contribution of the excitation D~-, 

<,l, slrrerrt2),,i,s\ <~slnlD~- ¢I><D~- ¢~lnt~bs> 
WiPt~tD~ + I W j /  = E 

~ s  e ° - E ° :  ~, 

<~bSlHID~ " ¢,><D~- ¢,IHI ¢,>C.C~1 
= e o  _ e o :  

If one could write 

then one would have 

since 

C1i CIj 
=h~L ~o--Z~- 

l e S  J-'j - -  't"D+ ¢t 

E ° - E°o:¢, = -- AEk Vj, I, (16) 

<,/,s, r4~rt(2) , I , s \  - -  h 2  - -  hk2 

E c,, % = <~,~1 C>. 
I ~ S  

(17) 

Then the inactive double excitations D~- would not couple the eigenvectors 
and would lead to a simply energy shift of the spectrum. However, there is no 
way to satisfy Eq. (16). In the CIPSI program we have enforced Eq. (17) for 
inactive excitations, but this practical trick is not satisfactory since one may 
image an A ... B problem in which at short rAB distance some orbitals on B 
are declared active, while they become practically inactive for the lowest states, 
the excitation concentrating on A when rAn increases. Then some excitations 
on B, involving these pseudo-active MOs, will have spurious effects on the 
spectrum of A. Recent papers supporting this strategy have apparently completely 
neglected this problem, and have not taken the precaution which has been 
introduced in CIPSI. 

2.5 Use o f  intermediate Hamihonians 

Another strategy consists in using a new perturbation theory and intermediate 
effective Hamiltonians [7], proposed by our group. This method is based on 
a partition of the model  space into a main model space S, of dimension m (m < n) 
and an intermediate model space of dimension (n - m), i.e. the complement of the 
main model space in the total model space. Then one searches for an effective 
Hamiltonian H int built in the total model space, such that its diagonalization gives 
only m exact roots and the components of the corresponding m eigenvectors in the 
total model space 

Hint]psOk> = EklPsOk>, k = 1,m. (18) 

The ( n -  m) other roots are not necessarily exact. Of course the intermediate 
Hamiltonians are not uniquely defined since one only imposes m x n conditions, 
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and several variants have been proposed recently. The simplest perturbative 
approach proposed in Ref. [7] assumed that the zeroth-order Hamiltonian was 
degenerated in the main model space Sr~ 

Ho49i = Eo49r VI ~ S,,. (19) 

(This restriction is not compulsory [37, 38].) Then the matrix elements of the 
2nd-order intermediate Hamiltonian are given by 

<4911Hi='(2)149,> = <49IIHI49s>- ~ (4911HI49~><49=IHIckj> - - ~  VI, J ~ S .  (20) 
~¢s E - E~ 

At this stage H int(2) appears as an effective Hamiltonian H era2) in which one has 
forced the zeroth-order energies of the model space determinants to be degenerate. 
But the higher orders differ, as may be seen in the order-by-order expansion of 
Ref. [7]. What are the properties of intermediate Hamiltonians? 

(i) There is no need to fear accidents regarding their convergence, provided that the 
intermediate model space involves all the determinants strongly interacting with 
those of the main model space. If 49j belongs to the intermediate model space the 
quantity (E ° - E°) - 1 never appears at any order, and the method accepts near- 
degeneracies between outer space intruder determinants and intermediate model 
space determinants. The intermediate model space acts as a variational buffer 
between the main model space and the outer space. In practice all tests [7, 21, 39, 
40] have proved the numerical efficiency of this approach. 
(ii) The method is not contracted, since the diagonalization occurs after the pertur- 
bative correction, as in QDPT. If one considers for instance the weakly avoided 
crossing model, the main model space must be defined by 492 at r < 0 and 491 at 
r > 0. The resulting intermediate Hamiltonian, at second order will be 

492 ar ~ - A E  h f o r r < 0 ,  
h ar 

- h for r > 0. 
(02 ar 

Notice that this Hamiltonian is continuous, but has discontinuous derivatives. The 
position of the crossing ( ICl l  = IC21) satisfies 

K2(arc - AE) = arc 

and the power expansion of the root gives 

K 2 K 4 
arc + . . .  

which should be compared to Eq. (1). The terms in KEh and h 3 are missing but the 
term K 4 / A E  a is correct, and if IKI f> Ihl one sees that the intermediate 2nd-order 
Hamiltonian describes the ground state potential curve more accurately than does 
the effective Hamiltonian. This is normal, since the intermediate Hamiltonian 
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concentrates here on the lowest root, sacrifying the accuracy of the second one. 
However, one must mention that going to third-order one introduces an off 
diagonal matrix element 

<~bl Inl q~a > <~b3 I/-/I qSx ><~bx Inl q52> <~bx [Hint(a)] ~b2> = 
(E o - -  E3)  2 

K2h 

(ar - AE) 2 

for r > 0, while for r < 0, the main model space is ~b2 and (~bl[Hint(3)l~b2) = 0. 
Thus the intermediate Hamiltonian becomes discontinuous at third order in this 
special case. 

However the 2nd-order intermediate Hamiltonian is not separable. The inactive 
double excitations D ~- acting on ~bI e S will give a determinant D ~- ~bI only inter- 
acting with ~bl and leading to a diagonal correction 

int(2) <¢I[HD: [¢I> = h~/(E ° - E°:¢,). 

The denominator depends on ¢i ,  whatever the choice of E °, and thus the inactive 
double excitations, instead of shifting the whole spectrum by a unique amount 
- h~/AEk as they should, will have spurious influences on the spectrum and on 

the component of the wave functions in the model space. This is a major defect 
of the second-order intermediate Hamiltonian. 

The physical origin of this defect is easily understood by considering the 
following model problem. Imagine an active space made of a ground state HF 
determinant ¢o and a doubly excited configuration ¢*, a and a* being the two 
active MOs 

~bo =- Icore cr&l = I ... ~ ... ~rff[, 

4~* = [core a*#*l = I ... i7 ... ~r*8*l. 

This is a typical CAS for a single bond breaking. Consider now a double excitation 
from the core MO i to a virtual MO r 

D [  = a f  a~ arab. 

Then D~- 4~0 = [ ... r f  ... a~l only interacts with ¢o, while D~- q~* = I .-. r f  ... ¢r*~*l 
only interacts with 4~*. If we concentrate on the ground state energy, ~bo defines 
the main model space, and Eo = (¢o [H[ ¢0). The diagonal corrections of H i"t(2) 
(diagonal dressings) are - K~r/A(i ~ r )  2 for ¢o and - K ~ , / ( A ( a  ~ a,)2 + 
A (i ~ r) 2) for q~*. Actually the error comes from the fact that the dressing of q~o 
incorporates the 2nd-order diagram 
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while the dressing of ~bo only incorporates the diagram 
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i.e. the 3rd-order correction to the wavefunction in the RS development from ~b0 

14,*)(4,* [HI D('~--.r)~ 4,* )<D(~-~,)~ 4'* [HI 4'*)(4'* [H[4'o) 
[/t(i  -or)  2 + A(cr ~ o*)2]A (a -oo*)  2 

and not  the other  correction of the same order 
* + * + * + + 

[4' 5<4' IHID(i-~o=4' )<D(io~)~4' ]HJD(i-~)~4'o><D(i.~)~(ooiHl4,o> 
[ A ( i  ~ r )  2 + A(~ ~ ~*)23 A(i ~ r )  2 

This last contribution is pictured by the diagram. 

Added to the preceding one it will give the same dressing 
- K ~ / A  (i ~ r) 2 of the <4'* [Hint[ 4'*), due to the energy denominator additivity 

but this diagram only appears in the 3rd-order correction to the intermediate 
Hamiltonian 

V <4'' IHI @~> <~= IHI 4,a><4,AHI 4's> 
~¢so E - E ~ E  - E ~  

• ¢s ~¢s. ( E° -- E°)2 

One sees that the contribution missing to H in'(2), needed to obtain separability, 
belongs to the first summation of the above equation, with 

4,J 4'0, 4'~ + + * = = Dci~r)~4'o, 4'~ = D(i~,) l~4'  • 
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So the intermediate Hamiltonians cannot behave properly regarding separa- 
bility (and thus size-extensivity) if they are built in the order-by-order expansion 
proposed in the original development [7]. This promising tool, which avoids the 
intruder-state nightmare and which behaves correctly in the weakly avoided 
crossings, must be revised to satisfy the basic separability criterion. This is the 
subject of a forthcoming work. 

Finally, one should mention for completeness the possibility of building 
an intermediate Hamiltonian in the multiconfigurational basis resulting from 
a prediagonalization of the model space CI matrix PsHPs. One obtains, as in 
Sect. 2.4 a basis of non-interacting vectors ~, among which the lowest states 
define a main model space, the other ones being considered as defining the inter- 
mediate model space 

Ps = Ps, + Ps,,, (21) 

Ps ,=  ~ IOk)(Ok[, (22) 
k = l , m  

Ps ' '= ~ [0t)(Otl. (23) 
l = m + l , n  

In Sect. 2.4, one built an effective Hamiltonian on the reduced model space S' 
associated with Ps, using QDPT.  Since (@klHI ~k~> = 0, the intermediate eigenspace 
vectors did not play any role in H at(a). Now one may build an intermediate 
Hamiltonian in the whole S space, and the intermediate eigenvectors Ot will again 
play a role since in H int(2) they are coupled with the model space functions through 
the outer space. Actually, in this approach, 

<tkilnin,(2)l@l> = ~ <O~IHIG><GIHIOz> 
~s Eo - E ° V~ki~kt ~ S. (24) 

It should be mentioned that the latter version of the intermediate Hamiltonian 
theory is rather costly; it is not clear whether the additional effort required to fulfill 
the {~p} = ){G} transformations is really compensated by improved results in 
comparison with Eq. (20). A simplified version neglecting the dressing of inter- 
mediate states had been proposed in [7] and intensively used in molecular calcu- 
lations [41, 42]: 

(2) <~IHIG>KGIHIO~> V G e S  ' O~eS', (25) <GIHin, lCq> = Y'. - - ~ - - ~  
~s El -- E~ 

<GIH~I~,~)=0 VG~S, 0~S". (26) 
Since Ps, HintPs" = 0, the main eigenvalues of H~nt coincide with those of the block 
Ps,Hi..Ps,, which is identical with the effective Hamiltonian (Eq. (11)). Indeed, one 
can easily verify that if ff is a eigenfunction of Ps,HintPs, with the eigenvalue/~, the 
function 

Ps,, HintPs'~ 
+ ff~ -- Ps,,Ui,tPs,, 

is the eigenfunction of Hint (Eqs. (25) and (26)) with the same eigenvalue /~. 
Moreover, for the systems with a large number of correlated electrons, all the 
values of/~ --(~kk] Himl ~kk), ~k¢S' (the main model space) should be quite large, so 
the intermediate-space correction to t~ becomes asymptotically insignificant. 
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Recently Hoffmann [43] has proposed a computational method which, re- 
stricted to second order, is based on the hermitized version of Eqs. (25) and (26). 
Since he does not use an intermediate Hamiltonian, he does not calculate the 
2nd-order dressing of the intermediate subblock Ps,,Hi"t(2)ps,,, which appears in 
our theory. It may be demonstrated that if one omits these corrections, the weakly 
avoided crossing problem is not solved correctly. In our 3 x 3 model problem one 
defines a new basis set 

~I = cos q~ 4h + sin (o q~2, 

~2 = sin tp q51 + cos (o ~b2, 

such that @'1 ]HI ~2) = 0 and one obtains a new expression of the CI matrix 

H l l  0 K cos (0 t 

0 H22 - K sin (p[. 

Kcos  q~ - Ksin q~ d E  j 

One shall take ~q as the main model space, ~k2 as the intermediate model space and 
the dressed matrix H in"2) will be 

H KS c°s2 (p 

- K 2 sin tO cos (p 

H l l  - d E  

- K z sin (0 cos q~'] 

. .  K 2 sin s q~ 1' 

which is now continuous, with continuous derivatives. 
At r = 0, sin (0 = cos q~ = 1/x/~ if h < 0, H11 = h, H22 = - h, and the matrix 

becomes 

2(h-- 2(h - dE) 

_ K 2 K s • 

2(/~---A-E) - h + 2(h - d E) 

If K 2 / A E  >~ Ihl, one sees that the dressing will force a backward rotation, as it 
should; the lowest eigenstate is essentially concentrated on ~1 

and E1 ~- - K S / A E '  
If one omits the dressing of the intermediate space and omits h the matrix takes 

the form 

I K2 K 2 ] 

2 d i  

K 2 
+ 0 
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The energy is not correct; E1 ~ - ( - 1 -  w/5KE)/4AE ~- -0 .8KZ/AE and the 
wave function has a spuriously large component on q~2 

- 0.85~bl - 0.52~b2. 

3. Numerical examples 

To illustrate the essential features of some of the second-order methods reviewed 
above, we present here two numerical examples. First, we apply both contracted 
and non-contracted second-order schemes to calculate the ground state of the LiF 
molecule in the region of the weakly avoided ionic-neutral curve crossing. Then, 
we consider the results of perturbative calculations of the two lowest 12; + states of 
the CuF molecule arising essentially from two strongly coupled configurations of 
the same Cu + F - ionic character, differing in the occupancy of the Cu + d-subshell. 
In both cases a balanced description of non-dynamical correlation is necessary for 
a qualitatively correct reproduction of the main features of the electronic structure. 
Our study focuses on the comparison of contracted-versus-decontracted calcu- 
lation schemes (for detailed numerical analysis of size-extensivity and separability 
aspects of second-order methods see Refs. [26, 36, 39, 44]). 

3.1 The neutral-ionic avoided crossing in LiF molecule 

The ground state of this molecule, being purely ionic near the equilibrium, disso- 
ciates adiabatically into neutral species passing via an ionic-neutral avoided 
crossing region at rac = 12.2-12.7 a.u. [45]. Due to the weakness of ionic-neutral 
interactions and large differences in the correlation energies for ionic and neutral 
structures, the calculated position of the avoided crossing point is extremely 
sensitive to the level of correlation treatment. 

To make a direct comparison of our results with the full CI data, we used the 
same contracted Gaussian basis set (9s4p)/[4s2p] Li, (9s6pld)/[4s3pld] F, as in 
Ref. [45]. The one-electron functions were obtained by the CASSCF method [46]. 
The active space, which also defined the S-space for subsequent second-order 
calculations, comprised two a-MO arising from 2pa AO of F and 2s-AO Li. Direct 
state-specific minimization of the ground state energy fails to produce continuous 
solutions in the avoided crossing region [45], so we employed the state-average 
(SA) optimization procedure with equal weights for two lowest 22;+ states. Since 
the restricted CASSCF model does not include any dynamical correlation, it 
substantially underestimates the relative binding energy of the strongly correlated 
ionic structure, providing an aberrant estimate for the avoided-crossing position 
(ra~ = 7.5-8 a.u.). 

Three different second-order schemes based on M611er-Plesset-like partitioning 
of the many-electron Hamiltonians were employed to take external correlations 
effects into account: 

(i) Non-degenerate generalized M611er-Plesset perturbation theory with CASSCF 
multiconfigurational zero-order functions known as CASPT2 [27, 46]. 
(ii) Intermediate Hamiltonian perturbation theory with only one (lowest) state 
considered as the main one (Eq. (20)). 
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Fig. 1. Calculated potential energy functions for the LiF 
molecule. Asterisks: full CI [451. Dotted lines: CASPT2. 
Solid lines: intermediate Hamiltonian perturbation 
theory. Dashed lines: effective Hamiltonian QDPT 
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Fig. 2. Ground-state dipole moment function for the 
LiF molecule. Same designations as in Fig. 1; 
dashed-dotted line: CASSCF/SA 

(iii) Conventional effective Hamiltonian quasi-degenerate perturbation theory 
(Eq. (11)). In the latter case, the doubly excited configuration was deleted from the 
model space in order to prevent the appearance of intruder states. 

Since the active M e  in our calculations were strongly localized, in the two 
latter cases the zero-order states might be considered as quasi-diabatic, while in the 
former one we started from an adiabatic description. 

The resulting potential curves along with the benchmark full CI energy values 
from Ref. [45] are plotted in Fig. 1. To visualize the neutral-ionic transfer in the 
avoided-crossing region, we display in Fig. 2 the ground-state dipole-moment 
functions computed by the finite-field technique. 

The CASPT2 method, which implies the contraction of the reference-space 
components of the wavefunctions, is obviously unable to improve the description 
of the avoided crossing. Moreover, the neglect of effective interaction between the 
perturbed multiconfigurational states leads to violation of the non-crossing rule. 
This effect had been predicted by Spiegelmann and Malrieu [8] on the basis of 
a model analysis and has been recently observed in molecular calculations by 
Nakano [33]. 
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The completely decontracted intermediate Hamiltonian approach reproduces 
almost quantitatively the full CI results both for potential energy and dipole 
moment functions, with the error in the avoided-crossing position less than to 
0.5 a.u. Certainly this remarkable accuracy of the 2nd-order results can partly 
be due to cancellation of errors since inclusion of the third-order correction 
slightly degrades the results (rac becomes overestimated by 1.0 a.u.) but it 
does indicate a fairly balanced description of correlation in the two diabatic 
configurations. 

Note that with this particular choice of the zero-order approximation, 
the resulting curves are smooth. However, in passing from M611er-Plesset to 
Epstein-Nesbet partitioning of H one can observe a slight change in the slope of 
the ground state potential function at the point of zero-order level crossing 
(r = 7.2 a.u.) predicted by our model Hamiltonian analysis (Sect. 2.5). 

The conventional QDPT provides a qualitatively correct description of the 
avoided crossing, while rao is shifted to shorter values due to significant overestima- 
tion (by ca. 0.5 eV, or 15%) of the dynamical correlation effects for the neutral 
structure. This deficiency should be attributed to the inherent tendency of the 
one-particle M611er-Plesset model to produce too high zero-order energies (and 
therefore too small energy denominators) for open-shell model states. 

3.2 Con f igura t ion  m i x i n g  in the two  xX+ lowes t  s ta te s  o f  C u F  

According to the results of large scale CI calculations [47] the ground (X ~,~ ÷) state 
of this molecule near the equilibrium is dominated by the closed-shell configura- 
tion (F-)Cu+(dl°), which is strongly favored by dynamical correlations, while the 
excited BiN + is essentially open-shell ((F-)Cu+d9s l) and significantly less corre- 
lated. Within the valence-active-space (2p F, 4s, 3d Cu) state-average CASSCF 
approximation these correlation effects are neglected and one arrives at a consider- 
able overestimation of configuration mixing (Table 1). As a consequence, in the 
frame of the contracted CASPT2 approach, one cannot describe correctly the 
differential correlation energy for the X ~ B transition, assigning to both states 
roughly the same amount of dynamical correlation. Moreover, the artificial de- 
pendence of the CASSCF mixing coefficients on the internuclear separation leads 
to aberrations in the shape of the CASPT2 potential curve and underestimation 
of the ground-state vibrational frequency. In contrast, the shortcomings of the 
CASSCF/SA zero-order approximation may be substantially corrected by the use 
of a non-contracted second-order scheme. We employed here a straightforward 
generalization of the simple intermediate Hamiltonian approach (Eq. (20)) to the 
case of several non-degenerate main states [37, 39] with M611er-Plesset-type en- 
ergy denominators. Since we worked in the basis of single Slater determinants, 
a three-dimensional main model space was chosen to describe properly two singlet 
states. As one can see from Table 1, this method allowed to rectify the main 
deficiencies of the CASSCF/SA approximation, reproducing the closed-shell 
character of the ground-state wavefunction and thus significantly improving the 
excitation energy estimate and preserving the shape of potential curve. Similar 
situations with the dks ° --  d k - ~s t _ d k -  2sO type configuration mixing controlled by 
dynamical correlations are perfectly typical for transitional metal compounds (see, 
for example, the discussion on low-lying states of NiH in [49]); the use of 
contracted schemes seems to be incompatible with moderate-size MCSCF refer- 
ence spaces. 
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Table 1. Calculated characteristics of the two lowest 127+ states of CuF. Contracted Gaussian basis sets 
and pseudopotentials from Ref. 1-47, 48] 

Active-space X1Z + - Bx~ + Ground state 
wavefunction composition vertical excitation vibrational 
s°dl°:sld 9 energy (cm-i)  frequency 
X i l  + B : / +  (cm-1) 

CASSCF/SA 59:36 40:55 10 347 620 
CASPT2 . . . .  10435 560 
H ~nt~z) 84:14 16:82 15182 617 

< 

Exptl. - -  - -  19 300 623 

Table 2. Summary of the existing 2nd-order multireference algorithms 

Convergence Effect of the outer Separability 
space on Ps~k of inactive exc. 

QDPT-(2) Bad (intr. states) Correct Exact if S =- CAS 
Diagon. of PsHPs + PT2 

CIPSI Good None Forced 
CASPT2 Good None Exact 

Diagon. of PsHPs + QDPT2 
CIPSI Good Correct in some Forced a 

well-behaved 
problems only 

Correct Intermediate Hamiltonian H int(2) Good Not satisfied 

The inactive double excitations are assumed to cause an uniform energy shift of all the states 
considered 

4. Conclusion 

The discussions of the present paper are summarized in Table 2. One sees that, for 
the time being, there is no satisfactory multiconfigurational second-order pertur- 
bative scheme. The QDPT-2 scheme is formally the best when the model space is 
a CAS, but then it suffers dramatic intruder state problems which can only be 
masked at low order by level shifts. The techniques consisting in perturbing a single 
vector resulting from the diagonalization of the model space CI, such as CIPSI and 
CASPT2, have the major drawback of being contracted, which necessarily results 
in spurious behaviour near weakly avoided crossings. For the time being, the 
QDPT-2 version of CIPSI, working in a physically meaningful model space 
spanned by a few eigenstates of PsHPs, seems the most reliable tool, but the 
separability of inactive double excitations has to be enforced. One may expect that 
the efficient CASPT2 algorithm will be rewritten promptly in an effective Hamil- 
tonian formalism along the same lines and will become the most satisfactory 
method. The intermediate Hamiltonian theory in terms of single determinants 
seemed a promising tool, since it is uncontracted and avoids the intruder state 
problem, but in its order-by-order development it does not satisfy the elementary 
separability requirement. Our next paper will give a solution to this difficulty. 
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